Helium Blockchain Application Market Growing Exponentially In 2022

6 min read

blockchain opportunities

Industrial IoT (IIoT) may comprise more than 70% of all IoT connections by 2024, already numbering in the billions , according to Juniper Research. This is a huge market for Helium’s IoT Connectivity Network, and will continue to grow as IoT enabled “Industry 4.0” increases industrial efficiencies while also reducing costs.

Helium is also well-positioned to take advantage of 5G related business expansion. Macro cell tower coverage is dismally inadequate for demand, making supplementary coverage by small cell antennas particularly valuable. This is where Helium and FreedomFi are likely to find exceptional growth opportunities, serving mobile virtual network operators with their license-free CBRS band radio frequency. The Helium connectivity model is enhanced with blockchain enabled decentralized peer-to-peer incentives that pay local 5G gateway hosts in HNT, Helium’s native cryptocurrency token.

Here is an excerpt from seekingalpha .com, looking at the burgeoning wireless connectivity market:

Connectivity Demand Driving Helium

Connectivity creates opportunities, and we expect the Connectivity theme to grow as the internet of things (IoT) connects more devices across sectors. Sparked by the continued miniaturization of microchips and receiving a powerful tailwind from the speed and capacity of 5G networks, IoT sensors and connected devices are set to harness the power of collected data. While these technologies appear to occur effortlessly, they rely on an extensive network of towers and data centers. Core to the Connectivity mega theme’s growth potential is the significant investment being made to enhance this digital infrastructure.

Key Takeaways

  • Industrial IoT (IIoT) will be a key component of the Fourth Industrial Revolution (Industry 4.0), which we expect to transform manufacturing and supply chains. IIoT is expected to account for over 70% of all IoT connections by 2024.1
  • Increased connectivity increases the need for investment in digital infrastructure. Between 2016 and 2020, the U.S. wireless industry invested $140 billion in infrastructure enhancements, building over 417,000 new cell sites in 2020 alone.2
  • The Connectivity theme lives up to its name by connecting numerous themes, both innovation-based and physical infrastructure-based. We believe this attribute makes Connectivity particularly dynamic from a portfolio perspective.

Why the Internet of Things and Digital Infrastructure are Such Powerful Forces

Connected devices are everywhere and growing more powerful.

Connected devices produce an almost unimaginable amount of data. Technology conglomerate Cisco estimates that IoT devices produced 500 zettabytes (1ZB = 1 trillion gigabytes) of data in 2019, and it expects that number to grow exponentially each year as more devices come online.3

In 2021, the average American household had 25 connected devices, up substantially from 11 at the end of 2020.4,5 In total, the U.S. had 468.9 million connected devices online by the end of 2021, including 190.4 million data-only devices such as smartwatches or medical sensors. Data-only IoT-focused connections have increased 272% in the U.S. since 2013.6 Globally, the number of connected IoT devices is expected to grow from 11.3 billion in 2020 to 27.1 billion by 2025 as the chipsets and wireless communication services that enable connectivity become more available.7

Internet of Things & Digital Infrastructure

Cheap and readily accessible sensor and communications chips enhance the capabilities of everyday devices. Microsoft data shows that the average price of an IoT sensor declined from $1.30 in 2004 to $0.44 in 2018.8 This trend combined with computing power increasing by a factor of 10 roughly every four years has resulted in even basic products such as toasters receiving a digital upgrade.9

In the short term, the semiconductor shortage has increased the prices of chips and other electronic components, demonstrated by the semiconductor producer price index rising from 54.1 to 55.3 in 2021.10 The long-term trend of declining costs per unit compute is expected to resume once manufacturing catches up with demand, further aiding IoT adoption.

Industrial IoT creates dynamic growth opportunities in the manufacturing sector.

Recent kinks in supply chains indicate that the current production paradigm isn’t sufficiently equipped to handle system-wide stress. The solution is to transform traditional and linear manufacturing supply chains into dynamic, interconnected systems. Bringing Industrial Internet of Things (IIoT) technologies into manufacturing facilities will change how products are made and delivered. Adding sensor technology and adaptive control systems to production lines will transform real-time data into actionable insights that can be used to increase manufacturing efficiency.

A key advantage of Industry 4.0 compared to just-in-time manufacturing is a reduction in downtime due to predictive repairs. Production downtime, even for necessary maintenance, can have large costs. By monitoring the current condition of machinery, reacting to warning signs, and cross-checking input and finished good levels, IIoT-enhanced factories can optimally schedule repairs, thereby reducing downtime and increasing facility throughput.

Further efficiency gains can be derived by utilizing IoT for inventory and asset tracking. With GPS technology, complicated logistics can be monitored and simplified. For example, a manufacturer can know in real time when a shipment of raw materials will arrive at a facility or when finished products arrive at a distribution center. This information can help companies maximize profitability by giving them insight on when to replenish inventory or help them locate and recover lost or stolen equipment and goods. McKinsey data shows that firms who implemented Industry 4.0 technologies were able to respond to the COVID-19-induced supply chain crisis in 96% of cases, while those firms without these technologies were able to respond just 19% of the time.11

Towers and data centers combine innovation and real estate.

Communications networks are essential digital infrastructure because they facilitate connections between the massive processing power of data centers and end users. Significantly, towers and data centers marry elements of growth-oriented technology investing and income-oriented real estate. Data centers provide physical space for customized server infrastructure while addressing cooling, power management, and security responsibilities, in exchange for regular fee payments. Data centers also serve a diverse set of clientele, including big tech companies, government agencies, financial services firms, and health care providers.

In 2020, the U.S. accounted for over 80% of new data center construction and expansion projects globally. Investment in this infrastructure totaled more than $700 million.12 But more is needed, as demands on digital infrastructure will only increase. The vastly improved bandwidth, latency, and speed that 5G networking technologies offer will be required for widespread adoption of advanced IoT-enabled devices like autonomous vehicles. However, current infrastructure is likely to crack under the additional load, making the need for cell towers greater than ever.

Currently, there are approximately 128,000 macro cell towers in the U.S., but each tower only has so much range and capacity. A typical cellphone only has enough power to reach a tower up to 5-7 miles away, and a single Long Term Evolution (LTE) cell can only manage about 200 active device connections per 5 megahertz (MHz) of spectrum before speeds begin to slow.13,14 The expansion of IoT means a higher demand for towers and wireless spectrum to ensure adequate coverage. Tower demand is expected to remain robust, with 6.37 billion active smartphone users globally.15 But construction and permitting hurdles often limit expansion, making existing towers increasingly valuable. In the U.S., suppliers of macro cell towers increased tower capacity by about 8% from 2019 to 2020.16 But over the same period, mobile data per smartphone increased 29%.17 Taking a longer-term view, U.S. mobile data traffic has increased by 108x over the last decade, which indicates that much more tower capacity will be needed to meet data demand.18

Internet of Things & Digital Infrastructure

Solutions for capacity constraints coming with 5G, continued investment.

With more data being collected by sensor-enabled devices than ever, transferring information in a timely manner can be a challenge. 5G networks offer a potential solution. Next-generation wireless networks offer more spectrum over more channels, increasing the number of devices able to actively connect to a tower at once, and allocating additional bandwidth to each device. 5G also uses small cell antennas, which have much shorter ranges than their macro counterparts.

The overlapping coverage areas that small cell antennas create raise wireless coverage density, which improves connections while alleviating pressure on any one tower. Coverage remains spotty compared to the more established 4G networks, but 20% of new smartphone sales in the U.S. were expected to contain 5G chips by the end of 2021, so improvement is inevitable.19

Wireless network providers are increasing investment in digital infrastructure. Data from wireless communications trade association CTIA shows that the wireless industry invested $30 billion into infrastructure projects in 2020, the third consecutive year capital expenditures increased, and the largest year of investment in the last five. Between 2016 and 2020, the industry’s investment in infrastructure totaled $140 billion. Over 417,000 new cell sites were built in 2020, a 35% increase from 2016. Over the last two years, a lighter regulatory touch facilitated more cell site construction than in the previous seven years combined.

This investment is in addition to the almost $200 billion spent on wireless spectrum auctions over the same period.20 Spectrum refers to the radio wave frequencies used to transfer wireless signals and is a core component of wireless communications. Auction winners are licensed to transmit on a larger swath of the electromagnetic spectrum, furthering the rollout of 5G technology and increasing the quality of end-user connectivity.

Visualizing the Market Opportunity

Internet of Things & Digital Infrastructure

The Connectivity theme continues to mature, creating attractive opportunities for long-term investors. The internet of things is now a core technology with connected consumer devices growing in capability and commonality while industrial applications catalyze the Fourth Industrial Revolution. Simultaneously, the digital infrastructure that this connectivity requires continues to advance, including 5G networking technology that provides users with wireless speeds that dwarf those of previous generations.

1 Juniper Research, IoT Connections to Reach 83 Billion by 2024, Driven by Maturing Industrial Use Cases, 3/31/20

2 CTIA, 2021 Annual Survey Highlights, 7/27/21

3 Sumo Logic, How Much Data Comes From The IOT?,

4 Deloitte, Connectivity and Mobile Trends Survey: 2020, 2020

5 Deloitte, Connectivity and Mobile Trends Survey: 2021, June 2021

6 CTIA, 2021 Annual Survey Highlights, 7/27/21

7 IoT Analytics, State of IoT 2021: Number of connected IoT devices growing 9% to 12.3 billion globally, cellular IoT now surpassing 2 billion, 9/22/21

8 Microsoft, 2019 Manufacturing Trends Report, 3/29/19

9 AI Impacts, Trends in the cost of computing, Accessed 11/22/21

10 Fred data as of 1/20/22

11 McKinsey, COVID-19: An inflection point for Industry 4.0, 1/15/21

12 ReportLinker, Data Center Construction Market – Global Outlook and Forecast 2021-2026, February 2021

13 SolidSignal, How far away can your phone be from the tower?, 4/15/19

14 ExtremeTech, ExtremeTech Explains: What is LTE?, 4/1/15

15 Bank My Cell, November 2021 Mobile User Statistics, Accessed 11/22/21

16 Wireless Estimator, Top 100 Tower Companies in the U.S., 9/11/20

17 Ericsson, Ericsson Mobility Report, June 2020

18 CTIA, 2021 Annual Survey Highlights, 7/27/21

19 Statista, 5G in the United States, 3/16/21

20 CTIA, 2021 Annual Survey Highlights, 7/27/21

Original article can be found at;//seekingalpha.com/article/4497541-connectivity-internet-of-things-and-digital-infrastructure

Via this site

Have A Story? Get Featured On Heliumaxxent Plus 100+ More Exclusive Crypto News Sites